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1. Introduction 3. Assessment of Current Footprint

To develop a regression-based methodology 

to predict farm-specific GHG footprints in the 

absence of farm-specific inventory data, 

using open-field tomatoes as a case study.

• Greenhouse gas  (GHG) footprinting is increasingly used to 

support strategies for sustainable sourcing and reduction of 

environmental impacts within agricultural supply chains.1,2 

• Cost and challenges of inventory data collection lead to the need 

for use of proxies and extrapolated datasets  Creates 

uncertainties that remain acknowledged but not quantified.3 

2. Footprint calculation
• 447 farm-specific data points of open-field tomato production 

from 2013-2015 were obtained from farmers in Africa, Asia, 

Australia, Europe and North and South America.

• The greenhouse gas footprint was determined for each farm 

using a functional unit of 1 tonne of fresh tomatoes (Figure 1).

Figure 1: System boundaries for greenhouse gas footprinting from 

cradle to farm gate (solid lines). Emissions from land conversion, 

capital goods production, pesticide production and transportation 

from farm gate are not within the system boundaries.
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4. Next steps: Model Building
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Figure 3: Variability of total GHG footprints and that contributed by each type of 

emissions: energy consumption, fertilizer production, field nitrous oxide emissions 

for the full dataset (Sample size= 447).

Figure 2: Variability of GHG 

footprints between a) Year 2013 to 

Year 2015 and b) between countries. 

n represents the number of farm 

data points in each country.
Source: alamy.com

• Each source of emission, i.e. energy consumption, fertilizer production, field

nitrous oxide emissions contributes to a different extent to the overall

variability of GHG footprints depending on the country: energy consumption

is on average the largest contributor (79%).
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Key Drivers of GHG emissions
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Response variable: Natural Log GHG footprint (kg CO2eq. per tonne)

Potential fixed predictors

 ln Farm Area

 ln GDP per capita

 Area equipped for irrigation

 Mean, Minimum and Maximum monthly 

precipitation within growing season

 Mean, Minimum and Maximum monthly 

temperature within growing season

 Number of consecutive no-rain days

 Number of days below/above a 

temperature range

 Topsoil organic carbon

 Soil nitrogen

 Topsoil clay content

 Cationic exchange capacity of 

topsoil clay content

 Soil pH

 Mean elevation
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1. Linear mixed models at the grid level 

to account for potential autocorrelation 

within nested dataset and heterogeneity 

due to country, farm and year differences.

3. Comparison of model outcomes to those derived from other models 

using a different set of predictor variables, e.g. MEXALCA4 (farming 

processes from MEXALCA vs biophysical parameters in this study).

2. Model application at the spatial scale of 

national and global level by grid averaging


